•  
  •  
 

Submission Type

Model/Framework

Keywords

Electronic Health Records, Data Quality, Data Variability, Data Warehouse

Abstract

Data variability is a commonly observed phenomenon in Electronic Health Records (EHR) data networks. A common question asked in scientific investigations of EHR data is whether the cross-site and -time variability reflects an underlying data quality error at one or more contributing sites versus actual differences driven by various idiosyncrasies in the healthcare settings. Although research analysts and data scientists have commonly used various statistical methods to detect and account for variability in analytic datasets, self service tools to facilitate exploring cross-organizational variability in EHR data warehouses are lacking and could benefit from meaningful data visualizations. DQe-v, an interactive, database-agnostic tool for visually exploring variability in EHR data provides such a solution. DQe-v is built on an open source platform, R statistical software, with annotated scripts and a readme document that makes it fully reproducible. To illustrate and describe functionality of DQe-v, we describe the DQe-v’s readme document which includes a complete guide to installation, running the program, and interpretation of the outputs. We also provide annotated R scripts and an example dataset as supplemental materials. DQe-v offers a self service tool to visually explore data variability within EHR datasets irrespective of the data model. GitHub and CIELO offer hosting and distribution of the tool and can facilitate collaboration across any interested community of users as we target improving usability, efficiency, and interoperability.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

DOI

10.13063/2327-9214.1277

app.R (21 kB)
Shiny application script.

Read.R (1 kB)
data preparation script.

testdata.csv (48 kB)
example dataset.

Share

COinS